

Análisis de energía y exergía de un camión de acarreo para un ciclo de trabajo en una mina de carbón a cielo abierto en Colombia

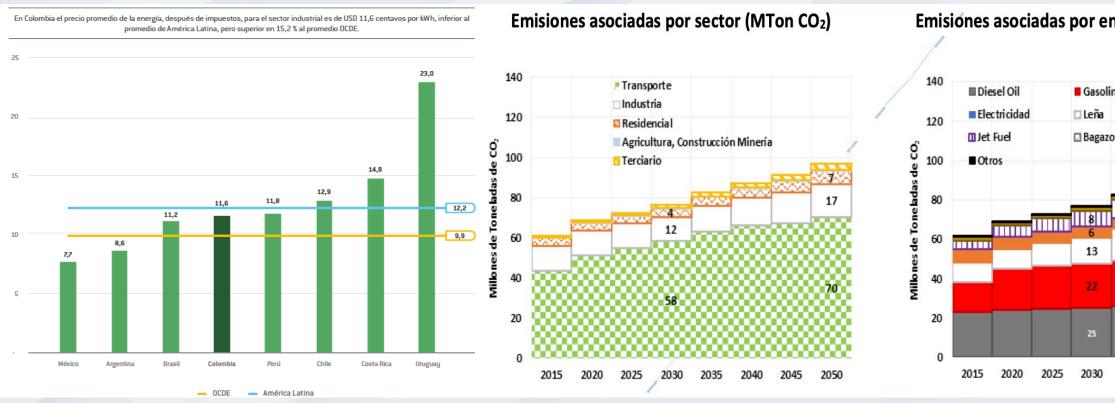
Ivan Ibañez Noriega

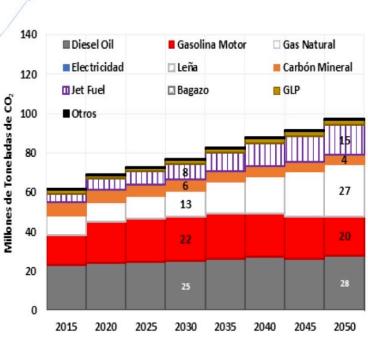
Customer Support Manager HTM/ iibanez@hitachitruck.com

CONTENIDO

• Herramientas metodológicas de análisis energético y exergético en maquinaria y procesos industriales orientadas al aprovechamiento energético.

IMPACTO ENERGETICO


- Encarecimiento de los precios energéticos a lo largo de 2022
- Confluencia de un intenso repunte en la demanda global de energía (debido a la reactivación del ciclo económico)
- Debilidad de la oferta (debido a problemas geopolíticos y del cambio del modelo energético hacia los combustibles no fósiles)
- En 2022, el contexto geopolítico está añadiendo presión adicional sobre los precios internacionales del gas y del petróleo



26 AL 28 DE ABRIL DE 2023. Bogotá - Colombia

Impacto energético

Emisiones asociadas por energético (MTon CO₂)

Fuente, https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf

ENERGIA Y EXERGIA

- Energía
- Movimiento o capacidad de generar movimiento
- Se conserva, ni se crea ni se destruye.
- Exergía
- Trabajo o capacidad de generar trabajo
- Se gasta, se puede destruir y crear
- Si queremos optimizar trabajo es más conveniente analizar el consumo de exergía que el de energía, las fuentes de exergía que las de energía
- La exergía es el máximo trabajo que puede sacarse de un sistema en interacción con su entorno.

Importancia del análisis energético y exergético para maquinas y procesos

 Cualquier fenómeno irreversible causa una pérdida de exergía, lo que significa una reducción del potencial de los efectos útiles de la energía, o por el contrario un aumento del consumo de energía

No existe una ley de conservación para la exergía.

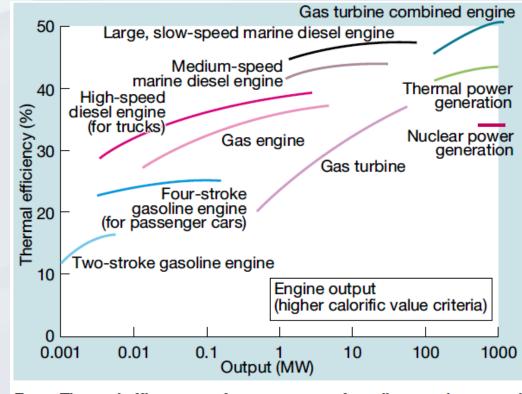
Eficiencia termodinámica de segunda ley

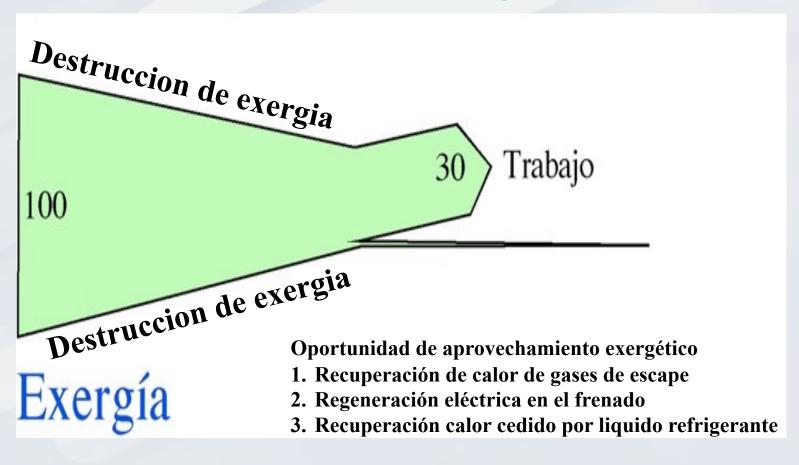
- Eficiencia de segunda ley o principio
- Eficiencia 1 principio

$$\eta_I = \frac{\text{Lo que se Obtiene}}{\text{Lo que se dá}}$$

Eficiencia 2 principio

$$\mathbf{\eta}_{II} = \frac{Lo \ que \ se \ Obtiene}{Lo \ maximo \ que \ p\'odria \ obtenerse}$$



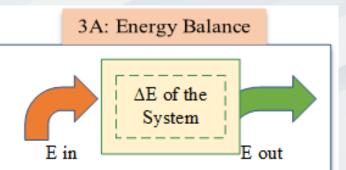

Fig. 1 Thermal efficiencies of various types of small- to medium-sized diesel and gas engines

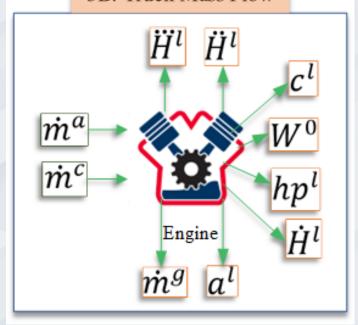
Análisis exergético

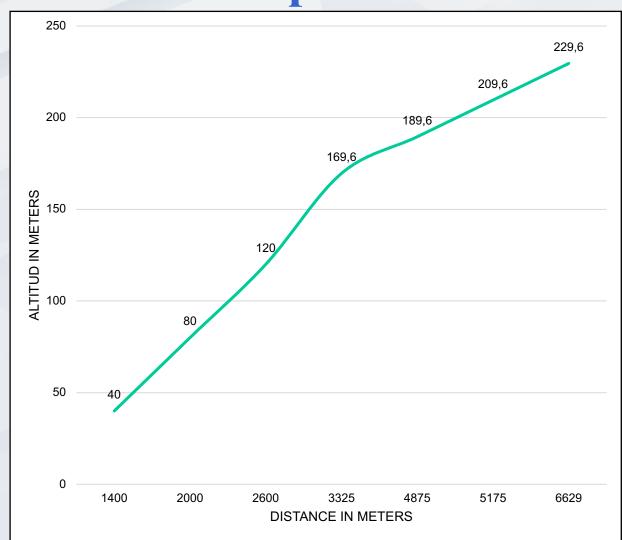
El análisis energético y exergético es una herramienta que puede ayudar a tomar decisiones orientadas al incremento del aprovechamiento energetico que promuevan la competitividad debido al cambio en los costos energéticos en un proceso o en una maquina

26 AL 28 DE ABRIL DE 2023. Bogotá - Colombia

Análisis energético y exegético de un camión minero

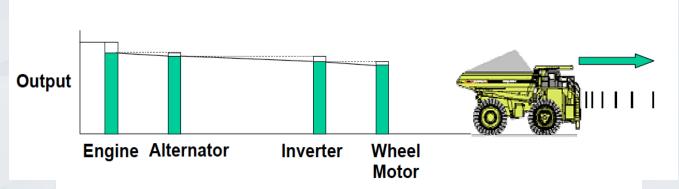

Aplicación y caso de estudio

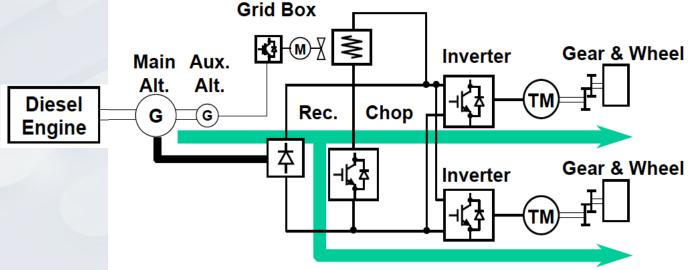



26 AL 28 DE ABRIL DE 2023. Bogotá - Colombia

1. Planteamiento de proceso

3B: Truck Mass Flow

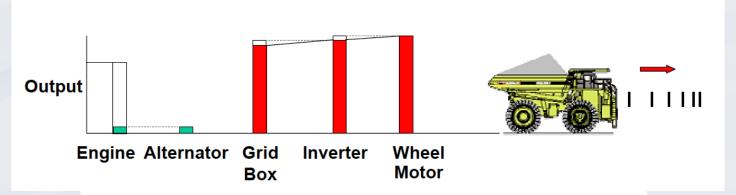


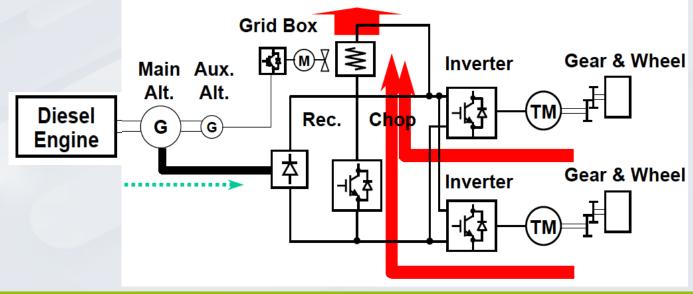


Asociación Colombiana de Ingenieros

2. Uso energético y perdidas

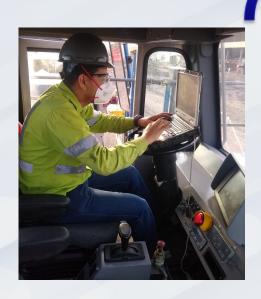
Energy Flow (Acceleration)





2. Uso energético y perdidas

Energy Flow (Retardation)

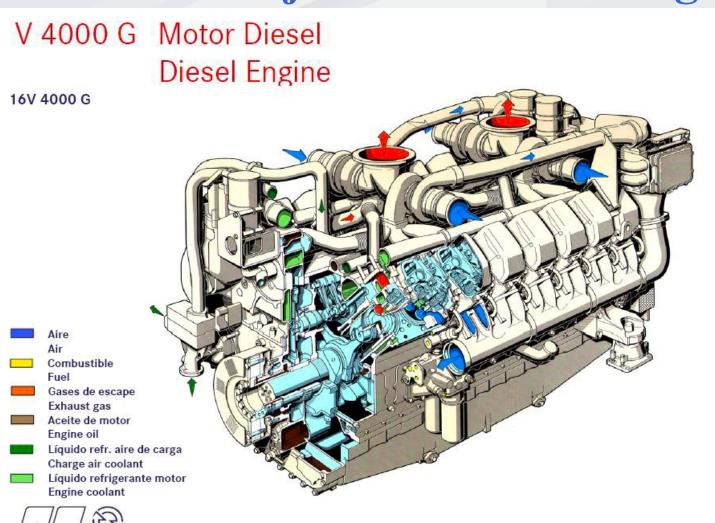


Asociación Colombiana de Ingenieros

3. Recolección de datos para análisis

4	Air Inlet Pressure(psi)	Air Pressure	Engine	Fuel Rate	Diesel Flow	Air Flow	Section	Air flow	Exhaust Flow
	PSI	Pa	RPM	gal/hr	Kg/s	M3/s f(rpm)	Area x speed	Kg/s	Kg/s
	13.75	9.E+06	910.00	4.83	4.37.E-03	3.47	3.55.E-03	4.35.E-03	8.72.E-03
	13.75	9.E+06	908.75	4.78	4.33.E-03	3.47	3.55.E-03	4.35.E-03	8.67.E-03
	14.00	1.E+07	906.25	4.67	4.23.E-03	3.46	3.55.E-03	4.35.E-03	8.57.E-03
	14.00	1.E+07	907.25	4.89	4.42.E-03	3.46	3.55.E-03	4.35.E-03	8.77.E-03
	14.00	1.E+07	907.75	4.56	4.13.E-03	3.46	3.55.E-03	4.35.E-03	8.47.E-03
	14.00	1.E+07	908.75	5.34	4.83.E-03	3.47	3.55.E-03	4.35.E-03	9.18.E-03
	13.75	9.E+06	908.75	5.36	4.85.E-03	3.47	3.55.E-03	4.35.E-03	9.20.E-03
	14.00	1.E+07	907.50	4.47	4.04.E-03	3.46	3.55.E-03	4.35.E-03	8.39.E-03

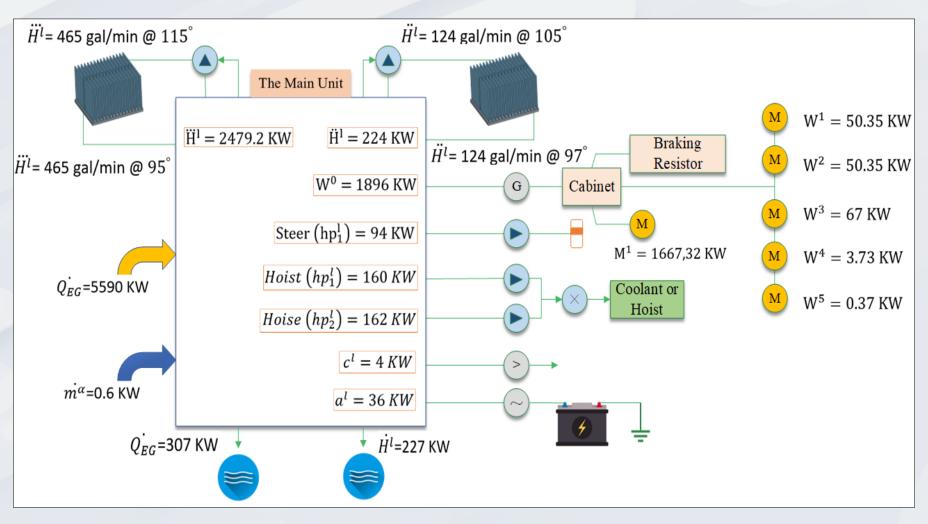
Engine Speed	Steer pump	Hoist pump 1	Hoist pump 2	Steer pump	Hoist pump 1	Hoist pump 2	Steer pump	Hoist pump 1	Hoist pump 2	Coolant Water	Coolant Oil
RPM	GPM	GPM	GPM	HP	HP	HP	KW	KW	KW	KW	KW
906.25	33.90	64.26	64.26	5.93	3.00	3.00	4.43	2.24	2.24	13.88	46.49
900	33.66	63.82	63.82	5.89	2.98	2.98	4.40	2.22	2.22	13.79	46.17
908	33.96	64.39	64.39	5.94	3.01	3.01	4.43	2.24	2.24	13.91	46.58
910	34.04	64.53	64.53	5.96	3.01	3.01	4.44	2.25	2.25	13.94	46.68
908.75	33.99	64.44	64.44	5.95	3.01	3.01	4.44	2.24	2.24	13.92	46.62
908	33.96	64.39	64.39	5.94	3.01	3.01	4.43	2.24	2.24	13.91	46.58
906.25	33.90	64.26	64.26	5.93	3.00	3.00	4.43	2.24	2.24	13.88	46.49
906.5	33.91	64.28	64.28	5.93	3.00	3.00	4.43	2.24	2.24	13.89	46.50
907.25	33.93	64.33	64.33	5.94	3.00	3.00	4.43	2.24	2.24	13.90	46.54
907.25	33.93	64.33	64.33	5.94	3.00	3.00	4.43	2.24	2.24	13.90	46.54
908.25	33.97	64.40	64.40	5.95	3.01	3.01	4.44	2.24	2.24	13.92	46.59
904.25	33.82	64.12	64.12	5.92	2.99	2.99	4.42	2.23	2.23	13.85	46.39
909.25	34.01	64.47	64.47	5.95	3.01	3.01	4.44	2.24	2.24	13.93	46.64
907	33.92	64.31	64.31	5.94	3.00	3.00	4.43	2.24	2.24	13.90	46.53
907.75	33.95	64.37	64.37	5.94	3.00	3.00	4.43	2.24	2.24	13.91	46.57


EXPO

Asociación Colombiana de Ingenieros

26 AL 28 DE ABRIL DE 2023. Bogotá - Colombia

4. Análisis de flujos masicos o energéticos



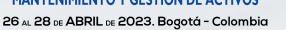
Asociación Colombiana de Ingenieros

4. Análisis de flujos masicos o energéticos

5. Balance energético y exergético

Equation of general balance

$$\dot{E}x_{diesel+air} = \dot{E}x_{work} + \dot{E}x_{Exhaust\ gases} + \dot{E}x_{coolant\ flows} + \dot{E}x_{destruction}$$

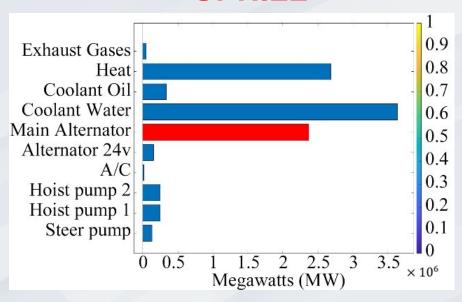

Equation exergy of fuel (diesel) $\dot{E}x_{diesel} = ex^{ch\dot{e}mistri} + \dot{e}x^{physics}$

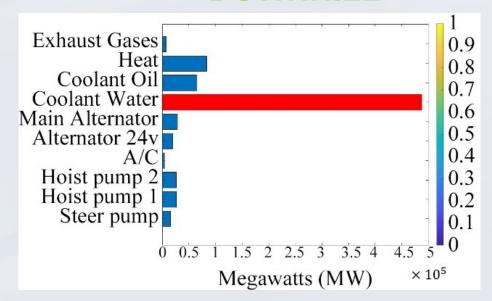
Chemical exergy for liquid fuel with sulphur content

$$\frac{\varphi^{diesel}}{LCV} = 1.0401 + 0.1728 \frac{h}{c} + 0.0432 \frac{o}{c} + 0.2169 \frac{s}{c} (1-2.0628 \frac{h}{c})$$

Exergy a analysis by flow $\dot{E}x_{flow} = m_{flow} \times ex_{flow}^{physics+quimical}$ $\dot{m}_{flow} \left[(h - h_o)_{flow} - T_o (S - S_o)_{flow} \right]$

Technologies not developed enough to recover quimical exergy.

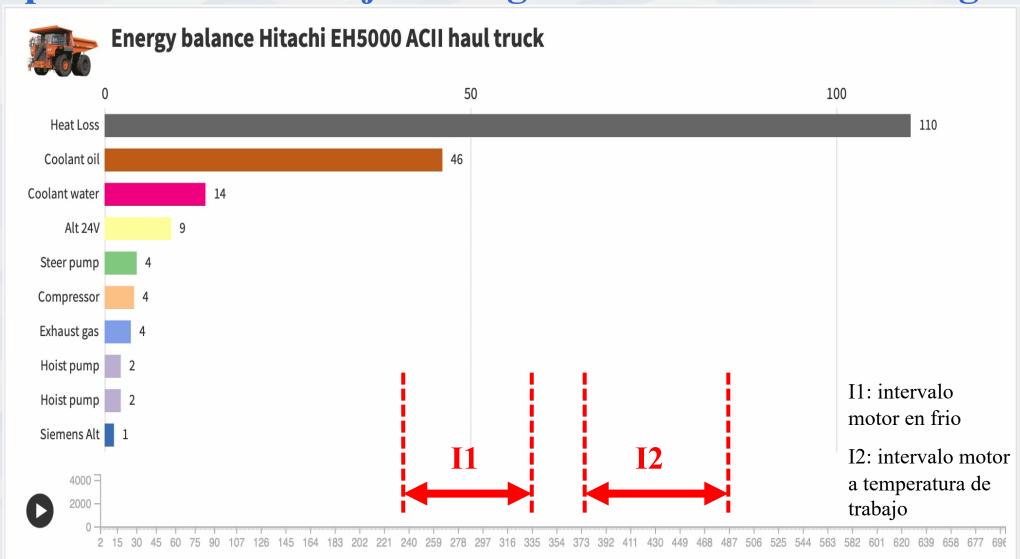




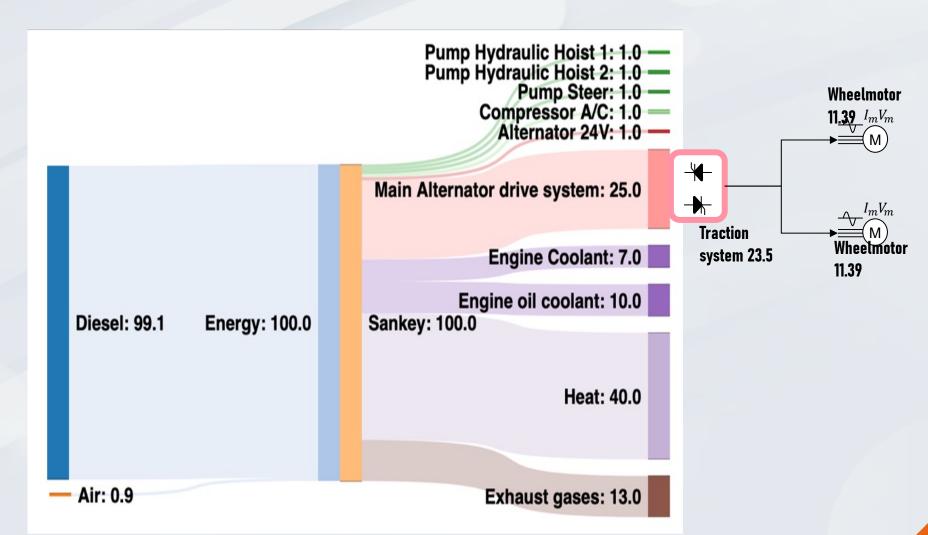
Colombiana de Ingenieros

5. Balance energético Uphill & Dowhill

UPHILL



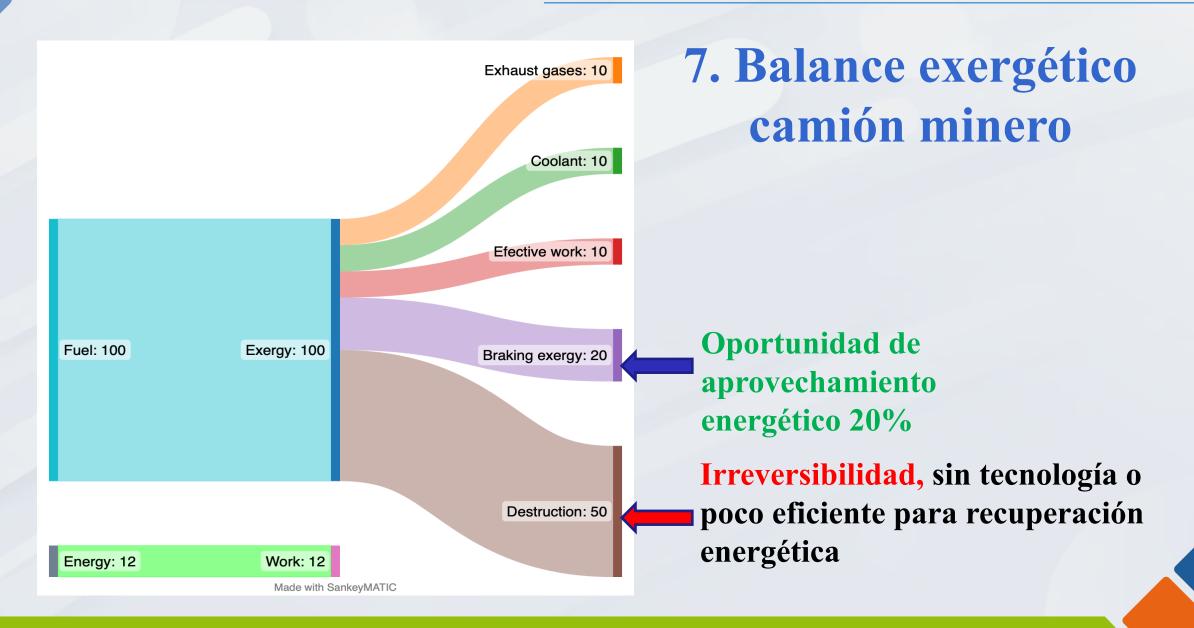
Comportamiento de flujos energéticos en un ciclo de cargue tipico


EXPO MANTENER

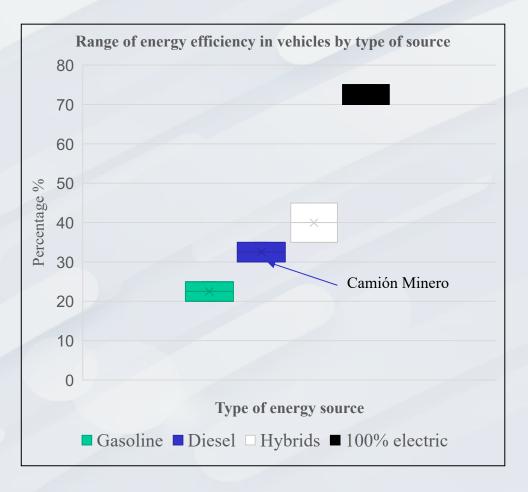
Asociación Colombiana de Ingenieros

26 AL 28 DE ABRIL DE 2023. Bogotá - Colombia

6. Sankey balance energético



Colombiana de Ingenieros


26 AL 28 DE ABRIL DE 2023. Bogotá - Colombia

8. Comparativo general de la maquina

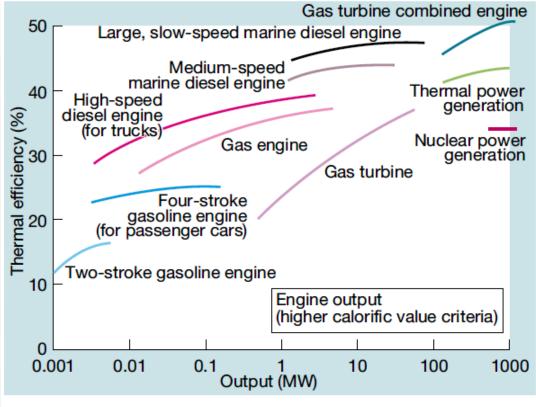


Fig. 1 Thermal efficiencies of various types of small- to medium-sized diesel and gas engines

conclusiones

- .Del 100% de potencial energético entregado por el diésel en un camión minero la maquina solo usa efectivamente un 30,5%
- Un camión minero tiene un 42,6% de potencial de aprovechamiento energético desde su desempeño funcional
- Un Camión minero tiene una eficiencia termodinámica de segunda ley equivalente del 32,5% considerando las tecnologías de recuperación energética en las perdidas térmicas del proceso

¡GRACIAS!

Ivan Ibanez N iibanez@hitachitruck.com